
An O-ring, also known as a packing, or a toric joint, is a mechanical gasket in the shape of a torus; it is a loop of elastomer with a disc-shaped cross-section, designed to be seated in a groove and compressed during assembly between two or more parts, creating a seal at the interface.
The O-ring may be used in static applications or in dynamic applications where there is relative motion between the parts and the O-ring. Dynamic examples include rotating pump shafts and hydraulic cylinder pistons.
O-rings are one of the most common seals used in machine design because they are inexpensive, easy to make, reliable, and have simple mounting requirements. They can seal tens of megapascals (thousands of psi) pressure.
History
The US patent claim for the O-ring was filed in 1937 by a then 72-year-old Danish-born machinist, Niels Christensen.[1] He came to the USA in 1891 and soon after that patented an air brake system for streetcars (trams). Despite his legal efforts, his intellectual property rights were passed from company to company until they ended up at Westinghouse.[2] During World War II, the US government commandeered the O-ring patent as a critical war-related item and gave the right to manufacture to other organizations. Christensen got a lump sum payment of US$75,000 for his efforts. Litigation resulted in a $100,000 payment to his heirs in 1971, 19 years after his death.[3]
Theory and design
O-rings are one of the simplest, yet most engineered, precise, and useful seal designs ever developed. They are one of the most common and important elements of machine design. O-rings are available in various metric and inch standard sizes. Sizes are specified by the inside diameter and the cross section diameter (thickness). In the US the most common standard inch sizes are per SAE AS568B specification (i.e. AS568-214). ISO 3601-1:2008 contains the most commonly used standard sizes, both inch and metric, worldwide. The UK also has standards sizes known as BS sizes, typically ranging from BS001 to BS932. Several other size specifications also exist.
Typical applications
Successful O-ring joint design requires a rigid mechanical mounting that applies a predictable deformation to the O-ring. This introduces a calculated mechanical stress at the O-ring contacting surfaces. As long as the pressure of the fluid being contained does not exceed the contact stress of the O-ring, leaking cannot occur. Fortunately, the pressure of the contained fluid transfers through the essentially incompressible o-ring material, and the contact stress rises with increasing pressure. For this reason, an o-ring can easily seal high pressure as long as it does not fail mechanically. The most common failure is extrusion through the mating parts.
The seal is designed to have a point contact between the O-ring and sealing faces. This allows a high local stress, able to contain high pressure, without exceeding the yield stress of the O-ring body. The flexible nature of O-ring materials accommodates imperfections in the mounting parts. But it is still important to maintain good surface finish of those mating parts, especially at low temperatures where the seal rubber reaches its glass transition temperature and becomes increasingly crystalline. Surface finish is also especially important in dynamic applications. A surface finish that is too rough will abrade the surface of the o-ring, and a surface that is too smooth will not allow the seal to be adequately lubricated by a fluid film.
Vacuum applications
In vacuum applications, the permeability of the material makes point contacts quite useless. Instead, higher mounting forces are used and the ring fills the whole groove. Also, round back-up rings are used to save the ring from excessive deformation [4][5][6] Because the ring feels the ambient pressure and the partial pressure of gases only at the seal, their gradients will be steep near the seal and shallow in the bulk (opposite to the gradient of the contact stress [7] See: Vacuum_flange#KF.2FQF. High-vacuum systems below 10−9 Torr use copper or nickel O-rings. Also, vacuum systems that have to be immersed in liquid nitrogen use indium O-rings, because rubber becomes hard and brittle at low temperatures.
High temperature applications
In some high-temperature applications, O-rings may need to be mounted in a tangentially compressed state, to compensate for the Gow-Joule effect.
Material
O-ring selection is based on chemical compatibility, application temperature, sealing pressure, lubrication requirements, quality, quantity and cost.
Synthetic rubbers - Thermosets:
- Butadiene rubber (BR)
- Butyl rubber (IIR)
- Chlorosulfonated polyethylene (CSM)
- Epichiorohydrin rubber(ECH, ECO)
- Ethylene propylene diene monomer (EPDM)
- Ethylene propylene rubber (EPR)
- Fluoroelastomer (FKM)
- Nitrile rubber (NBR)
- Perfluoroelastomer (FFKM)
- Polyacrylate rubber(ACM)
- Polychloroprene (CR)
- Polyisoprene (IR)
- Polysulfide rubber (PSR)
- Sanifluor
- Silicone rubber (SiR)
- Styrene butadiene rubber (SBR)
- Thermoplastic elastomer (TPE) styrenics
- Thermoplastic polyolefin (TPO) LDPE, HDPE, LLDPE, ULDPE
- Thermoplastic polyurethane (TPU) polyether, polyester
- Thermoplastic etheresterelastomers (TEEEs) copolyesters
- Thermoplastic polyamide (PEBA) Polyamides
- Melt Processible Rubber (MPR)
- Thermoplastic Vulcanizate (TPV)
Other seals
There are variations in cross-section design other than circular. These include the O-ring with an x-shaped profile, commonly called the X-ring, Q-ring, or by the trademarked name Quad Ring. When squeezed upon installation, they seal with 4 contact surfaces—2 small contact surfaces on the top and bottom. This contrasts with the standard O-ring's comparatively larger single contact surfaces top and bottom. X-rings are most commonly used in reciprocating applications, where they provide reduced running and breakout friction and reduced risk of spiraling when compared to O-rings.
There are also rings with a square profile, commonly called square-cuts, lathe cuts, or Square rings. When O-rings were selling at a premium because of the novelty, lack of efficient manufacturing processes and high labor content, Square rings were introduced as an economical substitution for O-rings. The Square ring is typically manufactured by molding an elastomer sleeve which is then lathe-cut. This style of seal is sometimes less expensive to manufacture with certain materials and molding technologies (compression molding, transfer molding, injection molding), especially in low volumes. The physical sealing performance of Square rings in static applications is superior to that of O-rings, however in dynamic applications it is inferior to that of O-rings. Square rings are usually only used in dynamic applications as energizers in cap seal assemblies. Square rings can also be more difficult to install than O-rings.
Similar devices with a non-round cross-sections are called seals or packings. See also washer (mechanical).[8]
Failure modes
O-ring materials may be subjected to high or low temperatures, chemical attack, vibration, abrasion, and movement. Materials are selected according to the situation.
There are O-ring materials which can tolerate temperatures as low as -200 C or as high as 250+ C. At the low end, nearly all engineering materials become rigid and fail to seal; at the high end, the materials often burn or decompose. Chemical attacks can degrade the material, start brittle cracks or cause it to swell. For example, NBR seals can crack when exposed to ozone gas at very low concentrations, unless protected. Other failures can be caused by using the wrong size of ring for a specific recess, which may cause extrusion of the rubber.
1 komentar:
Thanks, SAP PARTS™ is a rapidly growing Company in the field of Precision Products serving Heavy Engineering Industry, Construction and Agricultural OEMs, based in INDIA with a mission to produce innovative and world class Mechanical Floating Seals, today SAP Parts serves major OEM’s in India as well as throughout the GLOBE. For more details visit : http://www.sapparts.com/
Posting Komentar